skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Afzal, Sayed Saad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Underwater backscatter is a promising technology for ultra-lowpower underwater networking, but existing systems break down in mobile scenarios. This paper presents EchoRider, the first system to enable reliable underwater backscatter networking under mobility. EchoRider introduces three key components. First, it incorporates a robust and energy-efficient downlink architecture that uses chirp-modulated transmissions at the reader and a sub-Nyquist chirp decoder on backscatter nodes—bringing the resilience of LoRa-style signaling to underwater backscatter while remaining ultra-lowpower. Second, it introduces a NACK-based full-duplex retransmission protocol, enabling efficient, reliable packet delivery. Third, it implements a Doppler-resilient uplink decoding pipeline that includes adaptive equalization, polar coding, and dynamic retraining to combat channel variation. We built a full EchoRider prototype and evaluated it across over 1,200 real-world mobile experiments. EchoRider improves bit error rate by over 125× compared to a state-of-the-art baseline and maintains underwater goodput of 0.8 kbps at speeds up to 2.91 knots. In contrast, the baseline fails at speeds as low as 0.17 knots. Finally, we demonstrate EchoRider in end-to-end deployments involving mobile drones and sensor nodes, showing its effectiveness in practical underwater networked applications. 
    more » « less
  2. This paper investigates how an airborne node can eavesdrop on the underwater acoustic communication between submerged nodes. Conventionally, such eavesdropping has been assumed impossible as acoustic signals do not cross the water-air boundary. Here, we demonstrate that underwater acoustic communications signals can be picked up and (under certain conditions) decoded using an airborne mmWave radar due to the minute vibrations induced by the communication signals on the water surface. We implemented and evaluated a proof-of-concept prototype of our method and tested it in controlled (pool) and uncontrolled environments (lake). Our results demonstrate that an airborne device can identify the modulation and bitrate of acoustic transmissions from an uncooperative underwater transmitter (victim), and even decode the transmitted symbols. Unlike conventional over-the-air communications, our results indicate that the secrecy of underwater links varies depending on the modulation type and provide insights into the underlying reasons behind these differences. We also highlight the theoretical limitations of such a threat model, and how these results may have a significant impact on the stealthiness of underwater communications, with particular concern to submarine warfare, underwater operations (e.g., oil & gas, search & rescue, mining), and conservation of endangered species. Finally, our investigation uncovers countermeasures that can be used to improve or restore the stealthiness of underwater acoustic communications against such threats. 
    more » « less
  3. Abstract Imaging underwater environments is of great importance to marine sciences, sustainability, climatology, defense, robotics, geology, space exploration, and food security. Despite advances in underwater imaging, most of the ocean and marine organisms remain unobserved and undiscovered. Existing methods for underwater imaging are unsuitable for scalable, long-term, in situ observations because they require tethering for power and communication. Here we describe underwater backscatter imaging, a method for scalable, real-time wireless imaging of underwater environments using fully-submerged battery-free cameras. The cameras power up from harvested acoustic energy, capture color images using ultra-low-power active illumination and a monochrome image sensor, and communicate wirelessly at net-zero-power via acoustic backscatter. We demonstrate wireless battery-free imaging of animals, plants, pollutants, and localization tags in enclosed and open-water environments. The method’s self-sustaining nature makes it desirable for massive, continuous, and long-term ocean deployments with many applications including marine life discovery, submarine surveillance, and underwater climate change monitoring. 
    more » « less